高考数学重点知识点整理

时间:2021-08-13 15:16:05 高考数学 我要投稿

高考数学重点知识点整理

高考数学重点知识点整理1

  考点一:集合与简易逻辑

高考数学重点知识点整理

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与平面向量

  一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  考点六:解析几何

  一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

  考点七:算法复数推理与证明

  高考对算法的`考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大。推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问。

高考数学重点知识点整理2

  一、直线方程.

  1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

  注:①当或时,直线垂直于轴,它的斜率不存在.

  ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

  2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

  特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

  注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

  附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.

  3. ⑴两条直线平行:

  ∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

  (一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)

  推论:如果两条直线的倾斜角为则∥.

  ⑵两条直线垂直:

  两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)

  4. 直线的交角:

  ⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

  ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

  5. 过两直线的交点的直线系方程为参数,不包括在内)

  6. 点到直线的距离:

  ⑴点到直线的距离公式:设点,直线到的距离为,则有.

  注:

  1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.

  特例:点P(x,y)到原点O的距离:

  2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则

  特例,中点坐标公式;重要结论,三角形重心坐标公式。

  3. 直线的倾斜角(0°≤<180°)、斜率:

  4. 过两点.

  当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率

  ⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.

  注;直线系方程

  1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).

  2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)

  3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)

  4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.

  7. 关于点对称和关于某直线对称:

  ⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.

  ⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.

  若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.

  ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.

  注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.

  ②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.

高考数学重点知识点整理3

  第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二、平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三、数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四、空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  第五、概率和统计。

  这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

  第六、解析几何。

  这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

  第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

  第二类我们所讲的动点问题;

  第三类是弦长问题;

  第四类是对称问题,这也是20xx年高考已经考过的一点;

  第五类重点问题,这类题时往往觉得有思路,但是没有答案,

  当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七、押轴题。

  考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学重点知识点整理4

  一、求动点的轨迹方程的基本步骤

  1、建立适当的坐标系,设出动点M的坐标;

  2、写出点M的集合;

  3、列出方程=0;

  4、化简方程为最简形式;

  5、检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

【高考数学重点知识点整理】相关文章:

高考英语重点知识点整理08-27

高考数学复习主干知识点整理06-27

高考重点数学知识点11-27

高考政治知识点整理08-17

高考重点数学知识点6篇11-28

高考生物知识点整理04-06

2018年上海高考数学立体几何知识点整理07-26

高考物理重点知识点05-18

有关高考地理天体知识点整理08-12