微积分学(吴迪光张彬著)课后答案

时间:2017-09-22 11:48:31 微积分学答案 我要投稿

微积分学(吴迪光张彬著)课后答案

  微积分学内容主要包括函数、极限、微分学、积分学及其应用。以下是由阳光网小编整理关于微积分学(吴迪光张彬著)课后答案,希望大家喜欢!

  点击进入:微积分学(吴迪光张彬著)课后答案

  微积分学历史背景

  数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼兹大体上完成的,但不是由他们发明的。——恩格斯

  从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全崭新的面貌。而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。科学对数学提出的种种要求,最后汇总成多个核心问题:

  (1)运动中速度与距离的互求问题

  即,已知物体移动的距离S表为时间的函数的公式S=S(t),求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。比如,计算物体在某时刻的瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬间,物体移动的距离和所用的时间是0,而0/0是无意义的。但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。已知速度公式求移动距离的问题,也遇到同样的困难。因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。

  (2)求曲线的切线问题

  这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。

  (3)求长度、面积、体积、与重心问题等

  这些问题包括,求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的'进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早在古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间[0,1]上与x轴和直线x=1所围成的面积S,他们就采用了穷竭法。当n越来越小时,右端的结果就越来越接近所求的面积的精确值。但是,应用穷竭法,必须添上许多技艺,并且缺乏一般性,常常得不到数字解。当阿基米德的工作在欧洲闻名时,求长度、面积、体积和重心的兴趣复活了。穷竭法先是逐渐地被修改,后来由于微积分的创立而根本地修改了。

  (4)求最大值和最小值问题

  炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是求能获得最大射程的发射角。十七世纪初期,Galileo断定(在真空中)最大射程在发射角是45时达到;他还得出炮弹从各个不同角度发射后所达到的不同的最大高度。研究行星的运动也涉及到最大值和最小值的问题,如求行星离开太阳的距离。[1]

  微积分学创立过程

  早期思想

  早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。

  在3世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率π的近似值3.141024,并指出:“割之弥细,所失弥少 ,割之又割,以至不可割,则与圆合体而无所失矣”。刘徽对面积的深刻认识和他的割圆术方法,正是极限思想的具体体现 。数列极限是函数极限的基础, 一个数列an如果当n无限增大时,an与某一实数无限接近,就称之为收敛数列,a为数列的极限,记作liman=a例如an=1/n,数列的极限为0。

  微分学

  微分学的基本概念是导数。导数是从速度问题和切线问题抽象出来的数学概念。牛顿从苹果下落时越落越快的现象受到启发,希望用数学工具来刻画这一事实。若用s=s(t)表示物体的运动规律,即物体运动中所走路程s与时间t的关系,那么物体在t=t0时的瞬时速度为v(t0),并记v(t0)=s′(t0),并称之为路程s关于时间t的导数或变化率 ,也可记v(t0)=()|t=t0。而物体运动的加速度a(t)=v′(t)=s″(t)=()。导数作为一个数学工具无论在理论上还是实际应用中,都起着基础而重要的作用。例如在求极大、极小值问题中的应用。

  积分学

  积分学的基本概念是一元函数的不定积分和定积分。主要内容包括积分的性质、计算,以及在理论和实际中的应用。不定积分概念是为解决求导和微分的逆运算而提出来的。如果对每一x∈I ,有f(x)=F′(x),则称F(x)为f(x)的一个原函数,f(x)的全体原函数叫做不定积分,记为,因此,如果F(x)是 f(x)的一个原函数,则=F(x)+C,其中C为任意常数。定积分概念的产生来源于计算平面上曲边形的面积和物理学中诸如求变力所作的功等物理量的问题。解决这些问题的基本思想是用有限代替无限;基本方法是在对定义域[a,b]进行划分后,构造一个特殊形式的和式,它的极限就是所要求的量。具体地说,设f(x)为定义在[a,b]上的函数,任意分划区间[a,b]:a=x0<x1<…<xn=b,记,||Δ||=max{Δxi},任取 xi ∈Δxi,如果有一实数I,有下式成立 : ,则称I为f(x)在[a,b]上的定积分,记为I=f(x)dx。当f(x)≥0时,定积分的几何意义是表示由x=a,x=b,y=0和y=f(x)所围曲边形的面积。定积分除了可求平面图形的面积外,在物理方面的应用主要有解微分方程的初值问题和“微元求和”。

  联系微分学和积分学的基本公式是:若f(x)在[a,b]上连续,F(x)是f(x)的原函数,则f(x)dx=F(b)-F(a)。通常称之为牛顿-莱布尼兹公式。因此,计算定积分实际上就是求原函数,也即求不定积分。但即使f(x)为初等函数,计算不定积分的问题也不能完全得到解决,所以要考虑定积分的近似计算,常用的方法有梯形法和抛物线法。微积分学是微分学和积分学的总称。

  客观价值

  客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

  由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。


【微积分学(吴迪光张彬著)课后答案】相关文章:

1.电路分析基础(王金海吴旻著)课后答案

2.项目采购管理(吴守荣著)课后答案下载

3.经济数学微积分(吴传生著)课后答案下载

4.信号分析与处理(赵光宙著)课后答案下载

5.投资学第6版(博迪著)课后答案下载

6.汽车发动机原理(吴建华著)课后习题答案下载

7.材料物理性能(吴其胜著)课后答案下载

8.工程测试技术基础(曾光奇著)课后题答案下载